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Figure 1: A teaser image showing our real-time 3D avatar body generation. Our system RC-SMPL transfers point clouds from an
RGBD camera onto the animating body model to generate texture and normal maps. As the RGBD video stream comes in, our
system progressively completes the full texture and normal maps using acquired partial information.

ABSTRACT

We present a novel method for avatar body generation that cumu-
latively updates the texture and normal map in real-time. Multiple
images or videos have been broadly adopted to create detailed 3D
human models that capture more realistic user identities in both
Augmented Reality (AR) and Virtual Reality (VR) environments.
However, this approach has a higher spatiotemporal cost because
it requires a complex camera setup and extensive computational
resources. For lightweight reconstruction of personalized avatar bod-
ies, we design a system that progressively captures the texture and
normal values using a single RGBD camera to generate the widely-
accepted 3D parametric body model, SMPL-X. Quantitatively, our
system maintains real-time performance while delivering reconstruc-
tion quality comparable to the state-of-the-art method. Moreover,
user studies reveal the benefits of real-time avatar creation and its
applicability in various collaborative scenarios. By enabling the
production of high-fidelity avatars at a lower cost, our method pro-
vides more general way to create personalized avatar in AR/VR
applications, thereby fostering more expressive self-representation
in the metaverse.

Index Terms: Computing methodologies—Computer graphics—
Image manipulation—Texturing; Computing methodologies—
Artificial intelligence—Computer vision—Reconstruction

1 INTRODUCTION

In the AR/VR area, a realistic avatar is one of the essential factors
for representing the user’s ego. On the Metaverse, the user utilizes
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an avatar as an interface to express himself and communicate with
remote users. To generate the avatar efficiently, many studies have
attempted to automatically reconstruct the 3D model of the human
body with images or video input through deep learning techniques.
Considering the statistical validity of the human body model and
the need for animatable features, numerous studies have employed
parametric body models. The SMPL model [32], a controllable
3D body model that expresses individual body types, is the most
commonly used model for 3D human shape reconstruction. The
SMPL model has also developed follow-up studies such as SMPL-X
and STAR [39, 40], which are parametric models that make more
use of the details of human expression based on the SMPL model.

Several techniques have been studied to reconstruct the parametric
body models through visual information such as images [4,10,28,40]
or a video [5, 41, 50] using deep learning techniques to generate
avatars. SMPLify [10] and SMPLify-X [40] successfully reconstruct
each model with a single image input, but texture information is
not considered. Also, Lazova et al. [28] proposed a method that
adopts a generative adversarial network (GAN) to generate a full
body texture map, which still fails to deliver high-quality results
for the details of invisible parts. Video-based approaches [5, 41, 50]
can create full-body texture maps precisely. However, they require
a long processing time and show insufficient quality for dynamic
sequences such as moving arms or legs. Recent studies [48, 53]
obtain models with clothes and the human body in an animatable
form, but they have limitations that require high-quality scans. Re-
cently, the technique using radiance fields presented in [36] is widely
used to gather the realistic human body model and has shown good
performance [8, 13, 54]. However, learning the radiance field was
time-consuming, thus incorporating it into an interactive application
had a significant challenge. In addition, there was a limit to secur-
ing real-time due to the high amount of computational resources to
render on AR/VR HMD. Additionally, existing studies have con-
straints as they require separate pre-processing stages for recording
images/videos and creating avatars.

Therefore, we propose a real-time avatar generation system with



a single RGBD camera by progressively updating the texture and
normal map without complex pre-processing or initialization. Our
key idea is that the texture and normal maps can be gradually re-
fined when the user’s body is within the camera’s field of view
and movements are captured. Notably, the UV coordinates used
by the texture map and normal map are defined by the SMPL-X
body model, even as the avatar animates. This ensures consistent
alignment between the 3D coordinates on the mesh surfaces and the
2D UV space, referred to as UV correspondence. By maintaining
this UV correspondence defined by the SMPL-X body model, our
approach guarantees accurate alignment of the texture and normal
maps with the avatar’s geometry. The progressive update of the tex-
ture map and normal map with UV correspondence is a key feature
that distinguishes our method from previous studies and enables
real-time performance in interactive 3D human avatar interactions.

In summary, our contribution is the development of a system that
rapidly reconstructs human models, including texture and normal in-
formation. In particular, our system enables real-time reconstruction,
allowing users to create their own avatars by observing the rendering
results in real-time and adjusting their poses to improve the quality
of specific parts. Our ‘Real-time Cumulative SMPL-based Avatar
Body Generation(RC-SMPL)’ system, which uses a single RGBD
video stream as input, exhibits the following characteristics:

• Real-time reconstruction of a 3D human avatar via asyn-
chronous RGBD frame projection.

• Including full texture map and normal map of the avatar body
model.

• Enabling users to observe the texture of the progressively gen-
erated avatar.

We validate the system through experiments including real-time
verification, image similarity between input RGB images and render-
ing results, and user study with existing video-based reconstruction
method.

2 RELATED WORKS

2.1 Parametric body model

Parametric body models are mathematical representations of the
human body that allow for the efficient and accurate generation of
3D human shapes and poses. These models capture the underlying
structure of the human body, including variations in shape and pose,
by using a set of parameters that can be adjusted to create a wide
range of realistic human forms. By leveraging prior knowledge and
statistical analysis of human body shapes and poses, parametric body
models can reduce computational complexity and simplify the pro-
cess of human body reconstruction. In recent years, parametric body
models have become increasingly important in various applications,
such as computer graphics, VR, and AR.

In recent years, the Skinned Multi-Person Linear Model (SMPL)
[32] has gained widespread use in human reconstruction. SMPL
leverages large datasets to learn a mixture of shapes, representing hu-
man posture as a linear combination of rotation matrices. Compared
to Linear Blending Skinning (LBS), SMPL offers a more standard-
ized, simplified, and realistic approach with superior generalization
capabilities. However, SMPL lacks a detailed representation of
facial expressions and hand gestures, which convey significant inter-
active information. To address this limitation, Pavlakos et al. [40]
proposed the SMPL-X model, which emphasizes local details to
improve the representation of facial expressions and hand gestures.
Both SMPL and SMPL-X employ low-dimensional parameters as
inputs to generate high-dimensional human models. In this study,
we use the SMPL-X model as our base template human model.

2.2 3d human model reconstruction
Reconstructing 3D human models has been a long-standing chal-
lenge in the field of AR/VR, computer graphics, and computer
vision. High-quality reconstruction has been achieved in studies
such as [22, 30, 47], using an image as an input of a deep learning
network or fusing observations from dense arrays of RGBD camera.
However, these studies primarily focused on the 3D reconstruction
of humans in fixed poses, making their approaches unsuitable for
scenarios requiring new pose data to animate the model. Recent
advancements in 3D human model reconstruction have focused on
leveraging personalized or parametric mesh models, like SMPL or
SMPL-X [32, 40], to reconstruct 3D human models from monoc-
ular video input [5, 21, 24, 56]. These methods primarily deform
the template mesh to fit 2D joints and silhouettes, allowing for the
reconstruction of 3D human models without the need for complex
hardware setups. Additionally, studies such as [48, 53] have made it
possible to create animatable 3D human models that include cloth-
ing information using dense scans. Nonetheless, a limitation of
these studies has been the requirement of several hours for inference,
which constrains their practical applicability in real-time scenarios.

In recent years, neural representations [36] have emerged as a
powerful approach for modeling 3D humans [8, 13, 16, 31, 43, 54]
and head [11,17,19,58] utilizing neural representations have demon-
strated the ability to directly reconstruct high-fidelity neural hu-
man avatars from sparse sets of views or monocular videos, elim-
inating the need for pre-scanning personalized templates. These
techniques employ neural radiance fields [36] or texture fields in a
pose-independent canonical space to model 3D human shape and
appearance. Subsequently, the models are deformed and rendered
into various body poses to learn from posed observations. In par-
ticular, the study by [25] substantially reduced the training time
required for achieving high-quality results, building upon the exist-
ing methods that necessitated several hours of training. Although
these approaches have achieved impressive quality and can learn
avatars from monocular videos, they showed slow training and ren-
dering speeds. They usally display low frame rates and resolutions,
which restricts their applicability in AR/VR environments. These
studies also focus on learning radiance fields that produce 2D ren-
dering outputs, challenging their integration into commercial game
engines or rendering pipelines. Furthermore, these limitations have
difficulties directly expanding their applications to AR and VR,
where real-time interaction is essential.

In our work, we developed a system that cumulatively acquires
color and depth information from a sequence of frames to make
the details of 3D models from real-time RGBD video streams. Fur-
thermore, unlike existing video-based restoration techniques, we
propose a method that places more weight on the color and normal
information of the most recent frame and incorporates an algorithm
that satisfies real-time requirements.

2.3 Human body model texture generation
Texture generation for human model is a challenging task, especially
when working with multi-view images or video. The complexity
arises from the need to combine partial textures generated from
different views seamlessly, ensuring minimal ghosting and stitching
artifacts. Various techniques have been proposed to address this
issue, including blending [9,14,49] and mosaicing [6,29]. Learning-
based models that leverage multi-view images for training [20, 38]
still face similar challenges. Recent studies have explored the usage
of a single image with GAN [12, 28] or a single image with re-
identification supervision [52] for generating full-body texture maps.
However, these approaches have been challenged by issues related
to processing time and texture quality.

Our proposed approach, RC-SMPL, cumulatively completes tex-
ture maps obtained through 3D registrations to mitigate these prob-
lems. For more detail, we apply a local weight regarding the pro-



portion of the newly incoming image’s texture and normal to use,
refining our approach. This method allows for the high-quality, real-
time generation of texture and normal maps for the SMPL-X body
model, surpassing the limitations of existing methods.

2.4 Real-time 3D Human Model Generation
Recent advancements in real-time 3D human model generation have
aimed to overcome the limitations of previous studies that required
extensive processing and computation. In this regard, Lu et al. [33]
introduced an approach that directly utilizes depth information for
3D reconstruction, enabling the real-time generation of 3D human
models. However, this study primarily focused on 3D shape re-
construction and utilized only front and rear images of the scanned
subject for texture generation, employing offline processing tech-
niques. Moreover, their method did not utilize UV coordinate-based
texture maps but relied on vertex colors, resulting in the inability
to achieve high-fidelity representations. In contrast, our proposed
RC-SMPL approach specifically focuses on texture map genera-
tion, addressing these limitations by offering solution for creating
high-quality, real-time cumulative texture and normal maps for the
SMPL-X based avatar.

3 METHODOLOGY

The core idea is to asynchronously project color and normal values
onto an animating SMPL-X body model [40], updating the texture
and normal maps of the visible regions of the model. Transferring
raw values from the RGBD frame to the base body model and
implementing this asynchronously can enable real-time execution
of the system. Additionally, a seamless and continuous texture
acquisition can be achieved by referencing the texture map generated
from previous frames and blending it with the currently obtained
information. Fig. 2 illustrates the system’s overall structure.

The entire reconstruction proceeds as follows. Our system ac-
quires image streaming and body pose tracking information from an
RGBD camera for each frame. The SMPL-X body model is then
positioned using the body pose tracking and pre-acquired SMPL-X
shape parameters β . The RGBD image is converted to a point cloud
using camera parameters. The SMPL-X mesh and point cloud array
information are loosely overlapped at this stage. In order to achieve
real-time performance, the process of acquiring textures and normals
is conducted asynchronously. For each point in the point cloud, we
initiate a raycasting process from the camera origin, tracing the path
of the ray until it intersects with the mesh. We calculate an orthogo-
nality weight based on the inner product of the mesh’s normal value
and the direction of the ray, ensuring the reliability of the acquired
values. This weight is used to populate the corresponding texture
and normal maps at the point of intersection. The normal value
is calculated using the information from the neighboring points in
the point cloud array. The cumulatively filled texture and normal
maps in the UV coordinates are applied to the SMPL-X model’s
render during each asynchronous update. The system maintains
real-time performance through asynchronous UV map updates. For
the application of our system in AR/VR environments, the program
has been implemented using Unity, a widely used AR/VR/gaming
engine. The pre-required information before system operation, pro-
cesses executed for every frame, and asynchronous processes can be
summarized as follows.

• Pre-required information

– SMPL-X shape parameters (β )

• Processes executed for every frame

– RGBD video streaming

– Pose tracking (θ parameters of SMPL-X model)

– Avatar(SMPL-X model) animation

– Rendering of the resulting body model

• Asynchronous processes

– Raycasting and collision testing

– Calculation of normal values

– Conversion of points to UV space of SMPL-X body
model

– Texture and normal map updates

3.1 Preliminaries
We utilized the Kinect DK [2], a commercial RGBD sensor, and
the SMPL-X model to animate a realistic human body model in
real-time. The SMPL-X [40] model, denoted as M(β ,θ), requires
parameters for body shape β and pose θ .

Basic Body Model. The shape parameters β are obtained from a
single image in advance using the SMPLify-X [40] model. It extract
shape parameter using CNN-based method and interpenetration error
term.

Pose Estimation for 3D Model Animation. The pose parameters
θ are derived from the pose tracking data provided by Kinect DK.
The pose-tracking data is generated through the inference results of
a pre-trained neural network, which uses depth and color frames as
inputs. This ensures a robust foundation for real-time applications.

Animating of base body model. In our system, the pose parameters
and the SMPL-X model are updated per every frame, so we set the
notation as follows.

Mt(β ,θt) (1)

The pose parameters and the animated avatar mesh are expressed as
θt and Mt for the current frame t.

P(It) = {p0,0
t , · · · , pw−1,h−1

t } (2)

To apply texture to the animated SMPL-X body model, we utilized
the point clouds data of Kinect DK, which has converted from RGBD
stream. We represent RGBD image sequence as {I1, I2, · · · , It} and
each image is converted to a point cloud array P(It). The point cloud
array P(It) comprises pt points, organized in a grid with dimensions
w×h. w and h denote the number of pixels in the width and height
of the image, respectively.

pi, j
t = (x,y,z;r,g,b) (3)

The notation pi, j
t represents a point cloud at the image coordinates in

the frame t for pixel i and j. Each point cloud includes position infor-
mation relative to the x, y, and z axes, as well as color information,
denoted by the r, g, and b components. Through these processes in
every frame, the point clouds and visible parts of the SMPL-X body
model are loosely aligned in the virtual space.

3.2 Acquisition of Texture and Normal Maps
This subsection describes an asynchronous loop process for real-time
cumulative texture map generation. Each point cloud pi, j

t belonging
to the point clouds array P(It) is utilized for ray casting to calculate
the intersection with the animating avatar mesh Mt(β ,θt).

−→
d =

pi, j
t − Õ

|pi, j
t − Õ|

(4)

r(λ ) = Õ+
−→
d ·λ (0 < λ < λmax) (5)



Figure 2: System diagram of proposed method for real-time 3D human body model reconstruction and enhancement of texture and normal
maps. The diagram presents the various components of the system, which are detailed in Sections 3.1 (Preliminaries) through 3.3 (Normal Map
Generation).

Figure 3: An illustration of ray casting from the point clouds obtained
from the RGBD video stream onto the animated virtual SMPL-X model.
To better illustrate the concept of ray casting, we have exaggerated
the distance between the 3D body model and point clouds in the
figure, which is closely overlapped in reality.

Each point cloud creates a ray that passes through the camera origin
Õ and the point cloud pi, j

t . The direction of each ray is determined by
normalizing the distance between Õ and pi, j

t , as shown in Equation 4.
In Equation 4,

−→
d represents a unit vector indicating the ray direction.

The camera origin Õ serves as the ray origin. The system detects
a collision between the calculated ray r(λ ) and the SMPL-X mesh
Mt(β ,θt). The collision point, vi, j

t , is the point on the mesh closest
to the camera origin Õ where the ray and the avatar mesh intersect.
The coordinates of vi, j

t are used to transfer the color value of pi, j
t on

the UV coordinate-based texture map.
The mathematical representation of the collision detection be-

tween ray r(λ ) and avatar mesh Mt(β ,θt) can be written as:

vi, j
t = Collision(r(λ ),Mt(β ,θt)) (6)

where Collision(r(λ ),Mt(β ,θt)) is a function that finds the inter-
section point vi, j

t between the ray and the mesh that is closest to
the camera origin Õ. The collision detection is calculated using the
method described by [1].

(u,v) = F(vi, j
t ) (7)

The transformed colored point vi, j
t passed through Collision(·) is

converted into the UV coordinates (u,v) of the corresponding texture
map in the model through the UV mapping function F , as shown in
the Equation 7.

Instead of directly assigning RGB values in the texture mapping
process, our system updates the color values of the corresponding
areas in the UV coordinates using a weighted combination of the pre-
vious color values and the new color values from vi, j

t . The weights
are calculated using the angle information between the ray direc-
tion

−→
d and the normal vector −→nv at vi, j

t , as shown in the following
Equation 8).

wi, j
t =

√
−
−→
d ·−→nv (8)



Figure 4: Illustration of the lightweight technique for computing normal
values from acquired RGBD images. The normal values for a point
cloud vi, j are calculated using the cross product of the vectors formed
by its neighboring point clouds. This approach enables real-time
normal value computation while minimizing computing resources.

cu,v
t = (1−wi, j

t )∗ cu,v
t−1 +wi, j

t ∗ cnew (9)

The updated color values cu,v
t are acquired according to Equation 9.

Here, cnew stands for the color information of vi, j
t , identical to the

color value of pi, j
t .

The points transformed into the UV coordinate system are rel-
atively sparse compared to the model’s texture map, which can
potentially lead to seams during the texture map update process. For
online texture updating, our approach does not employ texture stitch-
ing techniques, such as blending [9, 14, 49] and mosaicing [6, 29]
considering the efficiency of the process. Instead, we utilize sur-
rounding pixel’s value during the coloring process. The color around
each point is blended according to a Gaussian distribution, which
helps to ensure a seamless integration between the colored regions
and their adjacent points on the avatar mesh.

3.3 Normal Map Generation

In this subsection, we introduce the real-time normal map generation
method incorporated into our system to represent the detailed fea-
tures of the human body model alongside the texture map. Typically,
surface normals are calculated from point clouds by finding neigh-
boring point clouds and computing eigenvectors. The computational
complexity for normal calculation, as explored in [37], involves
adaptively calculating the neighborhood size, resulting in a com-
plexity of O(Nlog(N)). This presents challenges when calculating
normals in real-time from a large number of point clouds.

To compute normal values, studies on [3,23] have leveraged batch
information from point clouds obtained using Kinect. Our system
follows a similar approach, as the point cloud information is gathered
from RGBD images, which are already ordered in a grid structure.
This ordered structure allows us to reduce the computational com-
plexity by specifying neighboring point clouds. Specifically, for
each point cloud vi, j, we utilize the positions of neighboring point
clouds vi−1, j , vi+1, j , vi, j−1 and vi, j+1. Fig. 4 illustrates our system’s
local normal calculation method.

ni, j
1 = (vi+1, j − vi, j)× (vi, j+1 − vi, j) (10)

ni, j
2 = (vi, j+1 − vi, j)× (vi−1, j − vi, j) (11)

ni, j
3 = (vi−1, j − vi, j)× (vi, j−1 − vi, j) (12)

ni, j
4 = (vi, j−1 − vi, j)× (vi+1, j − vi, j) (13)

−→
ni, j =

∑
4
k=1 n̂i, j

k
4

(14)

Cross products of vectors formed by neighboring point clouds vi, j

are calculated, as shown in Equation 10 to Equation 13. Each of

these vectors is normalized to create unit vectors, n̂i, j
k , representing

the direction of the original vectors (ni, j
k ). The final normal vector

−→
ni, j for the point cloud vi, j is derived from the average of these unit
vectors, as presented in Equation 14.

This method allows us to compute normal values for each point
cloud in real-time, taking advantage of the spatial relationships
between adjacent point clouds in the image domain.

4 EXPERIMENTS

In this section, we present the evaluation of our proposed system
through two user studies and system evaluation including image simi-
larity and computational performance. We compare our method with
existing approaches to demonstrate its effectiveness. Our method
requires RGBD frame stream data and a corresponding avatar model.
As no existing dataset satisfies these conditions, we collected our
dataset for qualitative and quantitative evaluations during the first
user study. Our experimental environments for processing are: Intel
Core i7-8700K CPU, RTX3080 GPU, 32G RAM.

4.1 User Studies
We conducted two human-subjects studies to verify that our method
successfully represents the real user’s body and delivers a sufficient
feeling of the avatar’s body embodiment by comparing it with the
existing method. For this, we designed Study 1 to generate avatar
models of real users for evaluation and evaluate the rendering results
in terms of avatar embodiment. In Study 2, the perceived similarity
of the created avatar models with the ground truth was evaluated in
the 3D devices’ environment from the third person’s point of view
in a more subjective way. In both user studies, the two experimental
conditions were the reconstructed avatars based on the methods of
(1) Video (Alldieck et al. [5]) and (2) Ours (RC-SMPL). A total of
12 different avatar models (shown in Appendix Figure 1), which
consisted of two types of avatars derived from each condition, were
utilized for both subjective evaluations: We performed avatar scans
to prepare these model sets in Study 1. The study content and
procedures were approved by Institutional Review Board in advance.

4.1.1 Study 1: Sense of Embodiment
The first study aimed to not only generate samples of real user’s
avatars based on each condition but also evaluate whether our
method sufficiently conveys the Sense of Embodiment (SoE) to
users, which is defined as the representation of users with appro-
priate body images [7, 26], as their virtual replica compared to the
existing method. Since a virtual avatar’s appearance can greatly
influence its user’s behavior, attitude, and overall perception dur-
ing the virtual experience [55, 57], the SoE has been broadly uti-
lized to evaluate a user’s body illusion toward the given virtual
avatar [18, 44]. Based on the previous studies investigating the
avatar appearance [15, 27, 34, 51, 55], which evaluated the user’s
SoE with various measurements, we also utilized the three rep-
resentative tools: (1) the Avatar Embodiment (AE) by Peck and



Figure 5: (Study 1) Results of Likert scale rating (1: strongly disagree – 7: strongly agree) for (A) Avatar Embodiment (AE), (A-1) AE–Appearance,
(A-2) AE–Ownership; (B) Virtual Embodiment Questionnaire (VEQ); and (C) Illusion of Virtual Body Ownership (IVBO). (statistical significance
between the experimental conditions: *p < .05)

Gonzalez-Franco [42]; (2) the Virtual Embodiment Questionnaire
(VEQ) by Roth and Latoschik [45]; and (3) the Illusion of Virtual
Body Ownership (IVBO) by Roth et al. [46].

The AE [42] and VEQ [45] evaluate the user’s body embodiment
of their virtual avatar, generally composed of self-identification,
agency, and self-location. From the AE measurement, the two
subscales—Appearance and Ownership—were adopted based on our
study purpose; the first subscale specifically focuses on appearance
elements such as posture, shape, and clothes. The items in VEQ
measure the perception of perceiving their own body and feeling of
control over a virtual body. From the IVBO [46], which indicates
the effect of users perceiving a virtual avatar’s body as their own,
we utilized items to measure the extent to the appropriate visual
feedback of motion control and changes in self-perception. As
a result, a total of 11 items on a seven-point Likert scale were
measured, and items with low relevance or unmeasurable due to the
study setup were deleted.

We recruited 12 participants—half of them were male, and half
were female—through the campus website, and their ages ranged
from 23 to 30 years (M = 25.83, SD = 2.41). The average height
was 166 (SD = 4.43) and 175.5 centimeters (SD = 5.75) for female
and male participants, respectively. Their previous experience with
avatar-mediated applications (e.g., Social Network Services (SNS)
or games) was asked: nine of them had never (six, 50%) or once
(five, 41.67%), and one participant only had up to five times (8.33%).

Due to the Video condition requiring about 6 hours to reconstruct
the avatar in our hardware setup [5], the study consisted of two
separate phases, and therefore the participants had to visit twice on
different dates. In the first phase, we used SMPLify-X [40] to obtain
an image-based body model and create a base SMPL-X avatar for
both methods. During the image collection process, participants
were instructed to assume specific postures: They were asked to
stand with their arms spread out in front of the camera and rotate
twice, capturing the necessary input for the Video condition. Once
we generated the avatars for both conditions, the participants were
invited to the second phase. In this phase, they performed the simple
task of experiencing the created avatars and evaluating them. Each
participant evaluated both avatar conditions in a balanced order. The
Video condition used a pre-generated avatar wearing the same clothes
the participant had on during phase 1; Ours condition also started
with a pre-generated avatar, but it was updated in real-time based on
the clothes that the participant wore during phase 2.

The main task involved controlling a virtual avatar displayed
in mirror mode on a 2D screen. Participants stood in front of a
camera to capture their movements and synchronize them with the
avatar in real-time. The virtual scene featured six floating spheres
that could be interacted with (Fig. 6(A)). When the user-controlled
avatar touched these spheres, the background of the scene changed

based on the sphere’s material. After freely exploring the avatar
and its appearance, participants reported their subjective evaluation
on the given questionnaire. Once they finished the task with both
conditions, a post-experiment interview was conducted to gather
general feedback.

Results
To analyze the quantitative results of the questionnaires, we used
a Paired Sample T-Test (α = .05) because our participants experi-
enced both types of avatar conditions. The normality of data distri-
bution and homogeneity of variances were first examined through
the Shapiro-Wilk and Levene’s tests. We excluded one data point in
IVBO as an outlier because of the invalid responses. The results are
illustrated in Fig. 5.

Avatar Embodiment (AE): The data was normally distributed
(Video: W = .982, p = .991; Ours: W = .932, p = .400), and the
variances were also homogeneous (F(1,22) = 1.432, p = .244).
There was no significant difference in AE for the avatar conditions
(t(11) = 1.192, p = .258). However, for the subscale of Appearance,
we found a significant difference between avatar conditions (t(11) =
2.300, p = .041): Participants working with the avatar generated
based on our method perceived higher embodiment related to their
appearance than the one based on the existing method (Video: M =
4.52, SD = .82; Ours: M = 5.00, SD = 1.01). The other subscale
of Ownership showed no significant difference between avatars
(t(11) = .155, p = .879).

Virtual Embodiment Questionnaire (VEQ): The assumption of the
data’s normality (Video: W = .870, p = .066; Ours: W = .920, p =
.288) and the variance’s homogeneity were also satisfied (F(1,22) =
.444, p = .512). It was revealed that there was no significant differ-
ence in VEQ for the avatar conditions (t(11) = 1.483, p = .166).

Illusion of Virtual Body Ownership (IVBO): The data of the IVBO
measurement also satisfied the normality (Video: W = .953, p =
.685; Ours: W = .973, p = .914) and the homogeneity assumption
(F(1,22) = 1.707, p = .206). We found no significant difference in
IVBO between the two avatar conditions (t(10) = 1.910, p = .085).

To the question of how the two avatars felt different or similar,
participants responded similarly: First, they mostly answered that
they felt not much difference because both avatars reflected their
body shape and feature such as height, and the way of control
their movement was also the same (P1–7, 10, 12). However, some
participants also emphasized that they felt more embodiment when
their clothes and appearance were updated in real-time under our
method (P1, 2, 6, 9), including P11’s comment—“Because the
avatar changed to reflect my appearance and the wrinkles on the
clothes were expressed, it felt more like my own avatar and seemed
realistic.”).



Figure 6: (A) In Study 1, participants engaged in the Sense of Em-
bodiment task, controlling a motion-synchronized virtual avatar and
interacting with spheres in the virtual space; and (B) and (C) illustrated
rendering results of avatar models in AR and VR, respectively.

4.1.2 Study 2: Subjective Perception on Avatar Similarity

The second study focused on directly comparing two avatars, each
generated by our approach and the existing method, following a sim-
ilar procedure to other texture reconstruction and image generation
studies. Using the 12 avatar models generated in Study 1, one avatar
type most similar to the ground truth image was requested to be se-
lected. Since it has been assumed that our approach would have the
potential to be utilized in an XR environment, we evaluated the ren-
dered results in two different devices (1) VR and (2) AR: For the VR
device, a Meta Quest Pro1 was utilized, and a Microsoft HoloLens
22 was used for the AR device, which is an Optical See-Through
Head-Mounted Display (OST HMD).

A total of 30 participants were recruited for Study 2, also through
the campus online community board. 17 of them identified as fe-
male, 12 as male, and one answered as other. Their ages ranged
from 21 to 33 years (M = 25.73, SD = 3.37). We asked about
their previous experience related to avatar-mediated applications and
AR/VR technologies such as wearable devices: Half of them had
less than four times of avatar-mediated experience (53.34%), and
the rest of them had more than five times (46.66%). Regarding the
experience with AR/VR, only one participant had never experienced
it, ten had less than four times (33.33%), and the majority of them
had more than five times of AR/VR experience (63.33%).

All participants experienced both devices and selected the avatar
based on their subjective perception of avatar similarity: Each de-
vice was assigned in a balanced order, and 12 avatar models were
randomly distributed to each participant but ensured that there were
no repetitions for both devices. In Study 2, the main task was to
observe both avatars’ movements shown in the virtual scene for
a certain period of time (Fig. 6(B) and (C)) and select one avatar
thought to be more similar. After they had experienced both devices,
we also asked them about the reason for their choices during the
retrospective interview.

Results
For the analysis, we first calculated the frequency and compared
the proportions of the choice of each avatar condition according to
the type of device and avatar models. To verify whether observed
proportions have statistically significant differences, we also used
the Chi-square test for non-parametric analysis.

1https://www.meta.com/quest/quest-pro/
2https://www.microsoft.com/en-us/hololens/

VR and AR Device: Even though the Video condition was an-
swered 20% and 18.33% more than the Ours condition for VR and
AR devices, respectively, the Chi-square test for statistical verifica-
tion showed that a significant difference between proportions was
found in VR device (χ2(1) = 4.800, p = .029). Conversely, the dif-
ference of the proportions between avatar conditions in AR device
was not statistically significant (χ2(1) = 4.030, p = .055): More
votes for the Video method represent a statistically significant over
our method only in a VR device, not in an AR.

Avatar Models: We further analyzed whether 12 avatar models’
clothes and distinguished appearances differently impact the user’s
perceived similarity. We found that three avatar types (Avatar 1,
5, and 11) had significant differences between proportions of the
collected response for each generating method (Avatar 1: χ2(1) =
5.000, p = .025; Avatar 5: χ2(1) = 5.000, p = .025; Avatar 11:
χ2(1) = 9.800, p = .002). These three avatars had more responses
for the Video condition than the Ours condition (50% more in Avatar
1 and 5, and 70% more in Avatar 11). On the other hand, there were
no significant differences between observed proportions in the other
nine avatar models (all p > .05).

In the interview, we asked about the reason for the choice of
avatar, and participants’ responses were aligned with the above re-
sults. It was commented that different characteristics in two devices
influenced the selection of similar avatars, as stated by P18 (“details
shown in VR and AR made me feel different about the avatar”): In
the case of VR, in which the existing Video method had more votes
than Ours, many participants could focus on more details and distin-
guish colors better due to the relatively high resolution, opaque, and
vivid display (P4, 8–10, 19, 25, 28, 29). Oppositely for the OST AR
device, due to its default transparency and additive color blending,
the details of the avatar were less visible, so the difference was not
greatly captured; even in the cases of wearing dark-colored clothes,
they looked more similar (P4, 6, 7, 10, 19, 25).

Regarding different avatar models, participants also mentioned
that the difference between two avatars was weakened when their
clothes had the features such as dark colors or plain patterns (P6,
21). However, in the case of avatar models where the Video method
had more choices, the majority of participants answered that they
considered the following factors: the color of the arm looks strange
(as greatly observed in Avatar 1), representation around joints parts
such as the neck, and clearly distinct details in clothes (e.g., hori-
zontal stripes, neck collar, patterns, or logo). Likewise, Avatar 11
of our method received negative evaluations because it had limited
representation in its neck collar area, as we also observed in the
qualitative results in Section 4.2.3 (Fig. 7).

4.2 System Evaluation
4.2.1 Image Similarity
In assessing image similarity, we computed the likeness between
the rendered results of generated avatar model and the RGB frame
images. We adopted the Structural Similarity (SSIM), a masked
version of SSIM (mask-SSIM), and the Peak Signal-to-Noise Ratio
(PSNR) as our evaluation metrics, in line with the methods of [35,
52, 59].

For a quantitative evaluation, we contrasted our method with the
video-based reconstruction method proposed by Alldieck et al. [5].
We generated full-body textures for the 12 participants in Study 1
using both our method and the [5], based on the acquired RGBD
video streams. To generate the textures, videos were recorded with
the camera placed directly in front of the participants while they
rotated twice in place with their arms extended. Subsequently, each
texture was applied to the body mesh Mt created using the pose
information θt and SMPL-X beta parameters β obtained from the
stored video streams in the study. Then the image similarity is
computed with the ground truth input RGB frames. The mask for
mask-SSIM is generated with the frame-by-frame body mesh. The

https://www.meta.com/quest/quest-pro/
https://www.microsoft.com/en-us/hololens/


Table 1: Quantitative comparison of image similarity metrics (SSIM,
mask-SSIM, and PSNR) between our method(Ours) and the video-
based reconstruction method(Video) proposed by Alldieck et al. [5].

Methods SSIM (↑) mask-SSIM (↑) PSNR [dB] (↑)
Video [5] 0.2325 0.9431 9.490
Ours 0.2327 0.9432 9.485

Table 2: FPS and texture completion ratio according to system config-
uration

Method Texture completion FPS
Mesh animation - 69.34
Ours (No async) - 4.04
Ours (async, 2 seconds) 58.54% 61.10
Ours (async, 1 second) 72.30% 50.65
Ours (async, 0.5 second) 86.64% 42.89
Ours (async, 0.3 second) 96.21% 34.76
Ours (async, 0.1 second) 99.30% 3.71

experimental results for image similarity are summarized in Table 1.
The portion marked as Video in the Table 1 refers to the video-based
approach [5]. Our rendering results showed slightly higher values
in both SSIM and mask-SSIM, while a marginally lower score was
observed for PSNR.

4.2.2 FPS Performance Evaluation
To evaluate our system’s FPS performance, we measured by altering
the transfer cycle during the asynchronous texture transfer process.
This assessment demonstrates the degree to which real-time per-
formance can be achieved. Furthermore, to evaluate the texture
generation performance, we defined the texture completion ratio as
the proportion of the texture completed during a 10-second turn in
front of the Kinect DK. Furthermore, to verify the real-time capa-
bilities of our system, we quantitatively compared the FPS levels
throughout the texture completion process. Lastly, as there are no
existing studies on real-time body texture completion during an
interaction, we made comparisons with the following systems.

• Mesh animation: Performs only mesh animation and rendering
• No async: Synchronous texture mapping
• Async: Asynchronous texture mapping (with a variation of

texture mapping frequency)

The experimental results are shown in Table 2. It shows the
system can generate high-quality texture maps while satisfying the
real-time FPS level with asynchronous texture updates. Also, while
the update cycle is shortened, the FPS decreases, but the texture
completion ratio increases.

4.2.3 Qualitative Results
We present the qualitative results in Fig. 7, which depicts the ren-
dering results of our approach in comparison with the ground truth
image and the avatar generation from the video-based restoration
method by Alldieck et al. [5]. In the cases of Avatar 6 and 8, our
method captures more detailed clothing patterns compared to the
results from Alldieck et al.’s method (denoted as Video). However,
for Avatar 11, our method struggles to accurately capture the com-
plex structure of the clothing around the neck region. The rendering
results of all 12 avatars used in the experiments are provided in the
Appendix.

5 CONCLUSION

In this paper, we propose a method to generate and render the tex-
ture and normal maps of an avatar’s body model in real-time. Our
system progressively updates the texture and normal maps using a

Figure 7: Comparative rendering results. From left to right: Ground
truth image, avatar generated by the video-based restoration method
by Alldieck et al. [5] (Video), and avatar generated by our proposed
method (Ours). Our method captures more distinctive clothing pat-
terns for Avatar 6 and Avatar 8 compared to the video-based method.
However, it failed to capture the bumpy patterns of the clothing around
the neck for Avatar 11.

single commercial RGBD camera, eliminating the need for complex
pre-procedures or extensive computational resources. Our novel al-
gorithms facilitate the rapid generation of texture and normal maps,
thereby ensuring real-time performance during 3D human avatar
interactions. We introduce weight values designed to determine
the reliability of newly acquired color values and preserve existing
textures. In addition, we propose the use of local normal values for
efficient calculations, which represents a novel approach not previ-
ously utilized in real-time systems. Through quantitative evaluation,
we verified that our real-time generated avatars achieve comparable
quality to those produced with the existing video-based restoration
method, which typically requires longer time. We validate the con-
venience of the method for avatar creation and its viability for use in
AR and VR environments via two user studies. However, our method
has certain limitations; the current system does not generate textures
for body parts that are not visible within the system, and recon-
struction performance tends to decline when dealing with complex
structures such as neck and arms. To overcome these limitations, we
plan to leverage learning-based methodologies in our future work,
aiming to enhance the efficacy and performance of our proposed
system. We will also incorporate advanced tracking methods and
animation of the parametric body model’s face and hands, creating a
more robust system for the rapid generation of full-body avatars.
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